Distant functional connectivity for bimanual finger coordination declines with aging: an fMRI and SEM exploration
نویسندگان
چکیده
Although bimanual finger coordination is known to decline with aging, it still remains unclear how exactly the neural substrates underlying the coordination differ between young and elderly adults. The present study focused on: (1) characterization of the functional connectivity within the motor association cortex which is required for successful bimanual finger coordination, and (2) to elucidate upon its age-related decline. To address these objectives, we utilized functional magnetic resonance imaging (fMRI) in combination with structural equation modeling (SEM). This allowed us to compare functional connectivity models between young and elderly age groups during a visually guided bimanual finger movement task using both stable in-phase and complex anti-phase modes. Our SEM exploration of functional connectivity revealed significant age-related differences in connections surrounding the PMd in the dominant hemisphere. In the young group who generally displayed accurate behavior, the SEM model for the anti-phase mode exhibited significant connections from the dominant PMd to the non-dominant SPL, and from the dominant PMd to the dominant S1. However, the model for the elderly group's anti-phase mode in which task performance dropped, did not exhibit significant connections within the aforementioned regions. These results suggest that: (1) the dominant PMd acts as an intermediary to invoke intense intra- and inter-hemispheric connectivity with distant regions among the higher motor areas including the dominant S1 and the non-dominant SPL in order to achieve successful bimanual finger coordination, and (2) the distant connectivity among the higher motor areas declines with aging, whereas the local connectivity within the bilateral M1 is enhanced for the complex anti-phase mode. The latter may underlie the elderly's decreased performance in the complex anti-phase mode of the bimanual finger movement task.
منابع مشابه
Bimanual Motor Coordination in Older Adults Is Associated with Increased Functional Brain Connectivity – A Graph-Theoretical Analysis
In bimanual coordination, older and younger adults activate a common cerebral network but the elderly also have additional activation in a secondary network of brain areas to master task performance. It remains unclear whether the functional connectivity within these primary and secondary motor networks differs between the old and the young and whether task difficulty modulates connectivity. We...
متن کاملNeural Activation and Functional Connectivity during Motor Imagery of Bimanual Everyday Actions
Bimanual actions impose intermanual coordination demands not present during unimanual actions. We investigated the functional neuroanatomical correlates of these coordination demands in motor imagery (MI) of everyday actions using functional magnetic resonance imaging (fMRI). For this, 17 participants imagined unimanual actions with the left and right hand as well as bimanual actions while unde...
متن کاملHow the brain handles temporally uncoupled bimanual movements.
Whereas the cerebral representation of bimanual spatial coordination has been subject to prior research, the networks mediating bimanual temporal coordination are still unclear. The present study used functional imaging to investigate cerebral networks mediating temporally uncoupled bimanual finger movements. Three bimanual tasks were designed for the execution of movements with different timin...
متن کاملAge-Related Changes in Frontal Network Structural and Functional Connectivity in Relation to Bimanual Movement Control.
UNLABELLED Changes in both brain structure and neurophysiological function regulating homotopic as well as heterotopic interhemispheric interactions (IHIs) are assumed to be responsible for the bimanual performance deficits in older adults. However, how the structural and functional networks regulating bimanual performance decline in older adults, as well as the interplay between brain structur...
متن کاملMeasuring interregional functional connectivity using coherence and partial coherence analyses of fMRI data.
Understanding functional connectivity within the brain is crucial to understanding neural function; even the simplest cognitive operations are supported by highly distributed neural circuits. We developed a novel method to measure task-related functional interactions between neural regions by applying coherence and partial coherence analyses to functional magnetic resonance imaging (fMRI) data....
متن کامل